Прозорец на Долф и Чебишев

Коефициентите a(k) на прозореца на Долф и Чебишев са следните.

Формула за коефициентите на прозореца на Долф и Чебишев

където N е дължината на прозореца; M = (N – 1) / 2; k = 0, 1, …, N; ωn = n π / (N – 1), ω0 е константа (ω0 > 0), T2M са полиномите на Чебишев

Полиноми на Чебишев

и cosh и acosh са хиперболичния косинус и арккосинус

Хиперболичен косинус

Хиперболичен арккосинус

Забележи, че върхът на този прозорец не е равен на 1, но прозорецът може да бъде нормализиран, така че върхът му да е 1.

Нормализиран прозорец на Долф и Чебишев

Терминът 1 / N преди сумата в първата формула по-горе не е нужен, не е там за да направи формулата по-близка до обратното дискретизирано преобразуване на Фурие, както е обяснено по-долу.

Стойностите на ω0 обикновено са малки (< 0.1; въпреки че примерите по-долу използват по-големи стойности заради проблеми с прецизността). Други определения на прозореца на Долф и Чебишев използват

Други определение на константите в прозореца на Долф и Чебишев

Тук, константата α > 0 дава 1 / cos(ω0 / 2) ≥ 1 и 1 / cos(ω0 / 2) приблизително равно на 1. Това създава един прозорец на Долф и Чебишев, главният лоб (на прозореца, не на филтъра) на който е сравнително широк и страните на който – тези, които потискат страничните лобове на филтъра – са сравнително къси. Това е същото, както когато се използват стойности за ω0, които са близко до нула.

Мотивация за прозореца на Долф и Чебишев

Вземи функцията

Амплитуден спектър на Долф и Чебишев

Когато ω минава между 0 и ω0, H намалява от 1 до 1 / T2M (1 / cos(ω0 / 2)). Когато ω продължава между ω0 и π, H се движи между 1 / T2M (1 / cos(ω0 / 2)) и -1 / T2M (1 / cos(ω0 / 2)). За перспектива, при ω0 = 1 и M = 100, T2M (1 / cos(ω0 / 2)) = 1.15E+45 и 1 / T2M (1 / cos(ω0 / 2)) = 8.71E-46. При тези параметри, функцията е тази показана в графиката по-долу.

Графика на амплитудния спектър на Долф и Чебишев

От една страна, тази функция може да е един реалистичен амплитуден спектър на един нискочестотен филтър, въпреки че намалява доста бързо. Въпреки че е трудно да се види в графиката, ω0 е честотата, при която амплитудният спектър H(ω) на прозореца на Долф и Чебишев стига своята "лента на спиране". За да изчислим филтъра на Долф и Чебишев от тази функция, можем да вземем обратното преобразуване на Фурие (с огледалната си част и изместен за да е с център при M, а не при 0). Това дава функцията показана най-горе в тази тема.

От друга страна, тази функция наподобява един импулс. Тъй като преобразуването на Фурие на произведението на две функции (филтъра и прозореца) е конволюцията на две преобразувания на Фурие (преобразуването на филтъра и преобразуването на прозореца), преобразуването на Фурие на прозореца е като филтър върху преобразуването на Фурие на филтъра. С други думи, амплитудният спектър на прозореца (в графиката по-горе) действа като филтър върху амплитудния спектър на филтъра, върху прозорецът е приложен.

Колкото по-малка е стойността на ω0 в прозореца на Долф и Чебишев, толкова повече функцията наподобява един импулс и действа подобно на един всичкопропускащ филтър върху амплитудния спектър на един филтър с ограничен импулсен спектър. Амплитудният спектър на филтъра остава непроменен, като при прилагането на един правоъгълен прозорец. С по-малки ω0, прозореца на Долф и Чебишев наподобява повече правоъгълния прозорец. С по-големи ω0, лобът на амплитудния спектър в графиката по-горе става по-голям и прозорецът на Долф и Чебишев създава по-гладък амплитуден спектър на филтъра.

Примери на прозореца на Долф и Чебишев

Следното е прозореца на Долф и Чебишев при три различни стойности на ω0 (0.1, 0.2 и 0.3) с N = 201 и M = 100.

Прозорец на Долф и Чебишев

Да предположим, че пробната честота е 2000 Hz. Вземи един нискочестотен филтър с преходна честота 40 Hz. Амплитудните спектри на съответните три филтри са показани в следната графика.

Амплитуден спектър на един нискочестотен филтър със и без прозореца на Долф и Чебишев

Когато ω0 се увеличава, прозорецът на Долф и Чебишев става по-тесен, атенюацията в лентата на спиране става по-добра, но преходната лента става по-широка.

Бележка за параметъра M

По принцип, при създаването на прозореца на Долф и Чебишев, няма нужда да се връзва параметъра M в полиномите на Чебишев T2M с дължината на прозореца N в обратното преобразуване на Фурие (във формулата по-горе M = (N – 1) / 2). Можем да изпишем формулата за прозореца на Долф и Чебишев по следния начин.

Формула за прозореца на Долф и Чебишев с алтернативен параметър в полиномите на Чебишев

където между N и L няма връзка. Следното е прозорецът на Долф и Чебишев от предишния пример с ω0 = 0.2 и с L = 100 и L = 75.

Прозорец на Долф и Чебишев при две различни L

Амплитудните спектри на съответните филтри с дължина 201 и с преходна честота 40 Hz са следните.

Амплитуден спектър на един нискочестотен филтър с прозореца на Долф и Чебишев при две различни L

Ако всичко останало е непроменено, едно по-голямо L ще произведе един прозорец на Долф и Чебишев с по-широк лоб и съответен филтър с по-добра атенюация в лентата на спиране, но с по-широка преходна лента.

Измерения за прозореца на Долф и Чебишев

Следното е графика на дискретизираното преобразуване на Фурие на прозореца на Долф и Чебишев върху дискретизираното преобразуване на Фурие на правоъгълния прозорец (с ω0 = 0.1).

Дискретизирано преобразуване на Фурие на прозореца на Долф и Чебишев

Измеренията на прозореца на Долф и Чебишев са следните.

ω0 = 0.1 ω0 = 0.2 ω0 = 0.3
Кохерентна амплитуда 0.34 0.25 0.20
Еквивалентна лента на шума 1.80 2.33 2.72
Загуба при преработката -2.56 dB -3.66 dB -4.35 dB
Загуба на лоба -1.44 dB -1.28 dB -1.23 dB
Загуба при преработката в най-лошия случай -4.00 dB -4.94 dB -5.58 dB
Ниво на най-високия страничен лоб -29.6 dB -31.9 dB -35.1 dB1
Спадане на страничните лобове -7.1 dB / октава, -23.5 dB / декада -7.1 dB / октава, -23.5 dB / декада -7.1 dB / октава, -23.5 dB / декада
Главният лоб е -3 dB 1.46 компонента 1.58 компонента 1.64 компонента
Главният лоб е -6 dB 2.18 компонента 2.58 компонента 3.48 компонента
Корелация при застъпването при застъпване от 50% 0.155 0.120 0.102
Амплитудна гладкост при застъпване от 50% 0.272 0.154 0.127
Корелация при застъпването при застъпване от 75% 0.440 0.261 0.201
Амплитудна гладкост при застъпване от 75% 0.914 0.579 0.377

1 Когато ω0 се увеличава, страничните лобове, които са най-близо до главния лоб на прозореца на Долф и Чебишев, изчезват бавно. Тези нива на най-високия страничен лоб не са прецизни, защото може да има странични лобове, които са по-близо до главния лоб и още не са изгладени.

Добави нов коментар

Filtered HTML

  • Freelinking helps you easily create HTML links. Links take the form of [[indicator:target|Title]]. By default (no indicator): Click to view a local node.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Image CAPTCHA
Enter the characters shown in the image.