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Chapter 18. The bilinear transformation and IIR filter transformations 
In chapter 17, we computed the Butterworth filter using the inverse Laplace transform, which 
was cumbersome.  The bilinear transformation is the standard approach used to convert a 
Laplace transform transfer function into a Z transform transfer function. 

18.1. The bilinear transformation 
One of the first results of the previous chapter was that the Laplace transform of a discrete 
signal evaluates to the Z transform with z = esT.  The bilinear transformation is an 
approximation of this result. 

The bilinear transformation is the substitution  

(18.1) 

or alternatively  

 (18.2) 

where T is the sampling time, or 1 / fs for the sampling frequency fs.  Usually, when the 
bilinear substitution is performed, T is assumed to be to 1. 

The result above follows from the Taylor series expansion of the function esT/2. 

(18.3) 

Setting T = 1 for simplicity, we note that if Re(s) = σ < 0, then  
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(18.4) 

Thus, if we have the Laplace transform transfer function of a stable filter with roots of the 
denominator in the left part of the s- complex plane, the transfer function that we will obtain 
with the bilinear transformation would have roots that are inside the unit circle and the filter will 
still be stable.  The bilinear transformation preserves stability. 

18.2. Butterworth filters with the bilinear transformation 
If we use the bilinear transformation on the Laplace transform transfer function of the second 
order Butterworth filter in equation 17.31, we will obtain the following. 

(18.5) 

Suppose again that the cutoff frequency is c = 0.6.  After scaling to obtain 1 at the beginning of 
the denominator, we get 

(18.6) 

This filter is different than the impulse invariant filter described in the previous chapter, because 
the bilinear transformation is an approximation.  Figure 112 compares the magnitude response 
of the two filters in the pass band and in the transition band. 
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Figure 112. Bilinear and impulse invariant Butterworth filters 

 
Although in the discrete digital case the bilinear transformation filter performs better, in the 
analog case this same filter warps the frequency spectrum. 

18.3. High pass and other Butterworth filters 
We could attempt the filter transformations that we used to derive FIR high pass, band pass, and 
band stop filters when designing IIR filters as well.  We would have to choose an easy an 
appropriate all pass filter and that could be difficult, considering that we would have to match 
the phase response of the all pass filter to the phase response of the low pass filter.  It could also 
be fruitless, given that IIR filters do not behave as nicely in the stop band as do FIR filters. 

The general prototype for an all pass filter was shown in equation 16.38.  An all pass filter has 
the same, but inverted coefficients in the numerator and the denominator.  If, for example, our 
low pass filter is the same as in the one in equation 18.6 then an easy all pass filter would be 

(18.7) 

The high pass filter would be the difference between the two 

(18.8) 

The magnitude response of this high pass filter, however, is not as well behaved as we might 
have hoped.  It has a normalized magnitude response that is greater than 1 in the pass band and 
that decreases slowly with higher frequencies, although that can be corrected to some extent by 
simply applying some gain to the coefficients in the numerator of the transfer function. 
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An easier filter transformation would be to realize that if the following is the magnitude 
response of a low pass filter 

(18.9) 

then a good magnitude response of a high pass filter is 

(18.10) 

As  increases up to and past c, this magnitude response would increase and settle at 
approximately 1. 

Given a low pass transfer function H(s / c), we can typically create a high pass transfer 
function by substituting s / c with c / s.  Substituting s / c with (s2 + c

2) / (B s) 
produces a band pass filter, where c is the midpoint of the pass band and B is the width of 
the band.  Substituting s / c with B s / (s2 + c

2) produces a band stop filter. 

We can then define the Butterworth filter again as the filter with the transfer function 

(18.11) 

where n is the order of the filter and Bn(S) are the normalized Butterworth polynomials given by 

(18.12) 

Substituting S = s / c produces the Butterworth low pass filter, where c is the cutoff 
frequency of the filter.  Substituting S = c / s produces the Butterworth high pass filter.  
Substituting S = (s2 + c

2) / (B s) produces the Butterworth band pass filter, where c is the 
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midpoint of the pass band and B is the width of the band.  Substituting S = B s / (s2 + c
2) 

produces the Butterworth band stop filter.  Since the transfer function and the Butterworth 
polynomials above are written irrespective of the cutoff frequency c (i.e., they use the cutoff 
frequency c = 1) and the various forms of the Butterworth filter require substitutions, the 
transfer function and the polynomials are called normalized. 

Take the transfer function for the second order Butterworth high pass filter with G = 1. 

(18.13) 

Use the bilinear transformation s = 2 (z – 1) / (z + 1) to rewrite this transfer function as follows. 

(18.14) 

When c = 0.6 for example, then the transfer function is 

(18.15) 

Take the sampling frequency of fs = 2000 Hz.  The cutoff frequency translates to c = 191 Hz 
and the transfer function above produces a filter with the magnitude response shown on figure 
113. 

Figure 113. Magnitude response of an example high pass Butterworth filter 
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Magnitude response of an example high pass second order Butterworth filter with c = 0.6. 

The following is the formula for the second order Butterworth band pass filter after the bilinear 
transformation. 

(18.16) 

For example, using c = 0.6 and B = 1 and scaling to obtain b0 = 1 produces the filter 

(18.17) 

Given a sampling frequency of, say, fs = 2000 Hz, the midpoint frequency translates to c = 191 
Hz and the band width translates to B = 318 Hz.  The magnitude response of this band pass 
filter is shown on figure 114. 
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Figure 114. Magnitude response of an example band pass Butterworth filter 

 
Magnitude response of a second order band pass Butterworth filter with c = 0.6 and B = 1. 

18.4. Higher order Butterworth filters 
When designing higher order Butterworth filters we have two choices.  We can use the methods 
describe above.  Those require many computations and may be tedious.  Alternatively, we can 
design higher order filters by stacking lower order filters.  Note, for example, that in a low pass 
Butterworth filter of order four, the roots of the denominator form two complex conjugate 
pairs.  s1 and s4 are a pair and s2 and s3 are a pair. 

(18.18) 

We can rewrite the transfer function of the fourth order low pass Butterworth filter as follows. 

(18.19) 

This is a multiplication of two transfer functions of two filters of order two.  These two filters 
are not Butterworth filters – their roots are not the roots of the Butterworth filter of order two.  
Notwithstanding, we can then treat these two transfer functions as two separate filters. 
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The product of two Laplace transforms is the Laplace transform of the convolution of the two 
respective functions.  In this case specifically, the multiplication of two transfer functions is the 
convolution of two impulse responses.  This means that the filters are to be stacked one after 
the other.  The output of the first filter is the input to the second filter. 

Figure 115 compares the magnitude responses of the second and fourth order low pass 
Butterworth filters, where the fourth order filter is implemented as two second order filters 
stacked one after the other.  The two filters themselves are computed after using bilinear 
transformations on the two separate multiples of the transfer function.  Note that the two filters 
cross at around -3 dB, which, with Butterworth filters, happens at the cutoff frequency.  The 
normalized cutoff frequency in this example is c = 0.6 radians per second, which is equivalent 
to approximately 191 Hz, given the sampling frequency of fs = 2000 Hz. 

Figure 115. Magnitude response of Butterworth filters of different order 

 
Comparison of the magnitude response of a fourth order and a second order Butterworth filters 
with c = 0.6 and fs = 2000 Hz. 

18.5. Phase response of the Butterworth filter 
Since we know the transfer function H(z) of the Butterworth filter, we can compute its phase 
response with equation 16.13. 

(18.20) 

For example, if the transfer function of some second order low pass Butterworth filter is 
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(18.21) 

Then its phase response at z = e-j  = cos( ) – j sin( ) is 

(18.22) 

The phase response of our example second order low pass Butterworth filter is shown on figure 
116 for the normalized  between 0 and π.  Unlike the phase response of symmetric FIR filters, 
this phase response is not linear. 

Figure 116. Phase response of a Butterworth filter 

 
Phase response of a second order Butterworth filter with c = 0.6. 

18.6. Equivalent noise bandwidth of the Butterworth filter 
While chapter 14 discusses the term equivalent noise bandwidth only as it applies to windows, 
the term is very appropriate for filters. 
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The simplest (first order) low pass Butterworth filter, for example, is defined by the transfer 
function 

(18.23) 

The magnitude response of this filter is 

(18.24) 

Since the magnitude response of the Butterworth filter is monotonically decreasing, Hmax = H(0) 
= 1.  The equivalent noise bandwidth is  

(18.25) 

Thus, the equivalent noise bandwidth is proportional to the normalized cutoff frequency.  Note 
that the magnitude response at the cutoff frequency is  

(18.26) 

The ENBW relative to the -3 dB frequency is 1.57. 

With filters of higher orders, the equivalent noise bandwidth decreases.   

Order 1 ENBW ≈ 1.57 

Order 2 ENBW ≈ 1.11 

Order 3 ENBW ≈ 1.05 

Order 4 ENBW ≈ 1.03 

Order 5 ENBW ≈ 1.02 

Order 6 ENBW ≈ 1.01 



DSP for Audio Applications: Formulae Chapter 18. The bilinear transformation and IIR filter 
transformations 

 

197 

18.7. Warping of the frequency domain and the biquad transformation 
The bilinear transformation filter performs better and is easier to derive, but warps the 
magnitude response of the filter.  The properties of the resulting filter are evaluated at s = -jω or 
z = e-jω.  However, 

(18.27) 

whereas 

(18.28) 

The discrete filter H(z), obtained after the bilinear transformation of H(s), will behave at the 
discrete frequency ωd the same way the continuous filter H(s) behaves at the frequency ωa = 2 
tan(ωd/2) (alternatively, ωd = 2 arctan(ωa/2)). 

For example, the squared magnitude response of the second order low pass Butterworth filter, 
computed from H(s), is 

(18.29) 

The squared magnitude response of the filter after bilinear transformation can be computed 
from  

(18.30) 

and is 
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(18.31) 

This warping of the frequency domain is small for small ω and increases as ω increases.  At ωa 
= 1, for example, ωd ≈ 0.927. 

When designing digital filters, this frequency warping can be remedied in one of two ways.  First, 
a discrete filter with the cutoff frequency ωd can be designed with the bilinear transformation on 
the continuous filter with the cutoff frequency ωa = 2 tan(ωd/2).  Alternatively, instead of the 
bilinear transformation, one can use the biquad transformation 

(18.32) 

An example filter designed with the biquad transformation is presented in chapter 19. 


